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Phase diagram of a Gaussian random copolymer

E. G. Timoshenko, Yu. A. Kuznetsov, and K. A. Dawson
Theory and Computation Group, Centre for Colloid Science and Biomaterials, Department of Chemistry,

University College Dublin, Dublin 4, Ireland
~Received 15 November 1996!

We study the stationary limit of the self-consistent kinetic equations derived earlier by us for a model of a
Gaussian random copolymer. The phase diagram of the model contains five different states separated by the
collapse, glass, and folding ‘‘transitions.’’ We perform a finite-size chain analysis and find that the kinetic
accessibility of the folded state is strongly impeded for sufficiently long chains. For the high-density globule
we propose a simplified treatment in terms of the three main order parameters. This approximation yields a
qualitatively correct phase diagram and allows us to demonstrate the thermodynamic stability of the folded
state.@S1063-651X~97!08005-7#

PACS number~s!: 36.20.2r, 87.15.By
s
fo
o
-
o
ti
ld
g
se
e
uc
en
tiv
n
w

.
o
tic
r.

in
fre
e
a
is
n
a
ha

u
o
is
is
d
te

ex

e

of
is
pin-

ima
r-
rial
lic-
he
ergy
ply
an
-
-
lica

d a
f
per-
al
i-
imi-
ram

cs
to-
ter-
li-
ar.
r-
e
s-
er
be

en-

al

in
m-
vant
le-
I. INTRODUCTION

Studying the conformational transitions in polymers po
sessing quenched random amphiphilicity is important
many applications in both synthetic and biological macrom
lecular systems@1–3#. There is a view in the scientific com
munity that elucidation of the conformational states
simple models of proteins, along with their attendant kine
laws, would be a crucial step in understanding protein fo
ing and misfolding@2#. One expression of the protein foldin
problem is to determine how a one-dimensional primary
quence of amino acid residues relates to the thr
dimensional structure of the folded protein, and to ded
the kinetics of folding process that brings a statistical
semble of extended coils into an essentially unique na
state. Much is written about this fundamental problem a
we refer the reader to many excellent monographs, revie
and original works on protein folding~see Refs.@4–9#, and
references therein!. We mention this by way of motivation
However, we need not enlarge the discussion here in
rather short paper devoted to the coarse-grained statis
mechanical description of a Gaussian random copolyme

In our previous work in Ref.@10# we have proposed a
nonequilibrium Gaussian self-consistent method for study
kinetics of a model based on the Edwards-type effective
energy functional with quenched disorder in the monom
two-body interactions. The method has the advantages th
is valid for kinetics as well as for equilibrium, and that it
suitable for description of both the fractal coil and the co
densed globular phases. In this sense it is a unique appro
though it does have its own weakness to which we s
come in Sec. III.

Previous numerical analysis of the self-consistent eq
tions resulted in what we believe is the correct picture
kinetic folding pathway pertinent to the general features d
covered experimentally in a number of proteins and d
cussed in Refs.@11,12#. Significantly, the method predicte
the existence of a nonfully compacted kinetic intermedia
possessing frozen and partially misfolded structure with
significant number of hydrophobic units exposed on the
terior of the globule.

By taking the stationary limit of the kinetic equations w
551063-651X/97/55~5!/5750~9!/$10.00
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obtain a set of the equilibrium equations for determination
the free energy minima. It is interesting to note that th
approach is an alternative to a more standard replica s
glass method@13,14#. In fact, in Sec. II C of Ref.@10# we
have shown that these equilibrium equations are the min
conditions of the variational free energy functional in a ve
sion of the Gibbs-Bogoliubov approach. We choose the t
Hamiltonian dependent on the disorder variables and exp
itly average the variational free energy functional over t
quenched disorder. Because we average the free en
rather than the partition function, there is no need to ap
the replica trick. In doing so, however, we have to use
approximation that is justified only for sufficiently small dis
persions of disorderD. Thus it would be of interest to com
pare some of our results with those of more standard rep
calculations. We have done so in Ref.@15#, which addresses
similar issues by a replica variational approach, and foun
fair agreement between the two approaches in a range oD.
We have not been able to reach higher values of the dis
sion of disorder in the replica formalism due to technic
difficulties in numerical solution of many-dimensional min
max problem there. The present approach allows us to el
nate such a limitation and to study the whole phase diag
of the system.

At this point it is important to emphasize that the kineti
after a quench from a homopolymerlike initial state au
matically preserves perturbativeness of the solution. De
mination of the equilibrium transition curves is a more de
cate problem. The cause of our concern is quite cle
Application of additional closure relations for the highe
order correlation functions may, in principle, violate th
variational bound for the free energy in the Gibb
Bogoliubov scheme. The error incurred thereby is of ord
D4 in our case. Thus we may expect the current method to
inaccurate in predicting the transitions curves if the free
ergy undergoes a change only in the orderD4. Nevertheless,
the kinetic information, such as position of the spinod
curves, should, in principle, remain reliable.

Here we address the equilibrium issues of the problem
the framework of our method. First of all, we study the co
plete phase diagram and consider the behavior of the rele
observables in different phases. This information is comp
5750 © 1997 The American Physical Society
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55 5751PHASE DIAGRAM OF A GAUSSIAN RANDOM COPOLYMER
mentary to the results of Ref.@10#. Furthermore, we analyz
the spinodal and transition curves of the folding transition
different chain lengths. This elucidates the finite-size dep
dence of the folding transition. Later on we propose a s
plified ansatz in terms of the system size, the phase sep
tion, and glass order parameters that can be obtained
the complete set of equations in the limit of the dense gl
ule. We show that this gives a qualitatively correct descr
tion of the three dense globular states. As an important
velopment, this approximation confirms the thermodynam
stability of the folded state for large chain lengths. Final
we consider the possibility of improving the equilibrium fre
energy by including higher-order corrections renormaliz
the second virial coefficient. We find that there is a uniq
value of the fourth-order correction coefficienta4 that allows
one to obtain the freezing transition curve.

II. THE SELF-CONSISTENT EQUATIONS

In this section we shall briefly define the model and wr
down the self-consistent equations derived in Ref.@10#. We
also introduce necessary notations and define the impo
observables. For further explanations and details we refe
reader to Ref.@10#.

It is convenient to use the Fourier transformsxq of the
monomer coordinatesXm in the chain index~see the Appen-
dix!. Note that we use letters of different case in order
distinguish between the two sets of coordinates. Descrip
of kinetics of the model is based upon the Langevin eq
tion,

z
d

dt
xq~ t !52

]H

]x2q
1hq~ t !, ~1!

^hq
a~ t !hq8

a8~ t8!&52kBTzdq1q8,0d
aa8d~ t2t8!, ~2!

wherez5Nzb , zb is the bare friction constant, andN is the
degree of polymerization. For the purpose of this paper
may disregard the hydrodynamic effect for it only affec
time-dependent characteristics.

The model accounts for the connectivity of the chain, e
cluded volume effects, and the random amphiphilicity of t
monomers. We choose the Edwards-type effective f
energy functional,H5H̄1Hdis, containing the homopoly-
meric H̄ and the disorderedHdis terms, respectively,

H̄5
k

2 (
n

~Xn112Xn!
21 (

L.2
ūL(

$m%
)
i51

L21

d~Xmi
2Xmi11

!,

~3!

Hdis5
1
2 (
m1m2

~Lm1
1Lm2

!d~Xm1
2Xm2

!. ~4!

Herek is the connectivity constant,ūL are the virial coeffi-
cients of the excluded volume interactions, and summa
over $m% includes all values of indicesm1 ,...,mL with mi
Þmi11 .

It is worthwhile to comment here on the origin of the ter
~4! of the effective free energy functional that is linear in t
disorder variables@16#. One usually proceeds from the effe
tive free energy functional,
r
n-
-
ra-
m
-
-
e-
c
,

e

nt
he

o
n
-

e

-
e
e

n

Hms5Hsol@Ra#1Hmon@Xn#2(
n,a

I nd~Xn2Ra!,

which includes the terms describing the solvent degree
freedomRa , the monomer degrees of freedomXn , e.g., in
the form of Eq.~3!, and a contact monomer-solvent intera
tion, characterized by thenth monomer hydrophobic
strengthsI n , respectively. A simple way of deriving Eq.~4!,
proposed by Garel and Orland@1#, would be then to explic-
itly use the solution incompressibility condition,

rmon~y!1rsol~y!5(
n

d~y2Xn!1(
a

d~y2Ra!

5r05const, ~5!

in order to integrate out the solvent degrees of freedom. T
yields the partition functionZms5ZsolZ, where the effect of
the solvent influence on the monomer degrees of freed
appears inZ only via the following term in the effective free
energy functional:

H5 (
nÞn8

@u21
1
2 ~ I n1I n8!#d~Xn2Xn8!1••• . ~6!

Now, by introducingū25u21I andLn5I n2I , whereI is
the mean value ofI n , we obtain Eq.~4!.

The random variablesLm , and consequently their Fourie
transformslq , are assumed to possess a Gaussian distr
tion with the second momentum,

lqlq85D̄2dq1q8,0 , D̄2[D2/N, ~7!

whereD has the meaning of the dispersion of disorder. H
and throughout we use the angular brackets^A& to denote the
statistical averages over the noise and initial ensemble
monomer positions {x(t50)} and the overbarĀ to denote
averages over the quenched distribution of disorder$L%.

In our previous work in Ref.@10# we have derived in
some approximation closed kinetic equations for the t
types of correlation functions. Thus let us introduce t
mean-squared amplitudes of the normal modes,

Fq~ t ![Fq~ t !, Fq~ t !5 1
3 ^uxqu2~ t !&, ~8!

and the disorder correlation functions,

wqp~ t ![fqp~ t !, fqp~ t !5 1
3lq2p^x2q~ t !xp~ t !&. ~9!

These satisfy the following self-consistent equations:

z

2

d

dt
Fq~ t !52

2

3 SFq ]A
]Fq

1(
p

wqp

]A
]wqp

D , ~10!

z
d

dt
wqp~ t !52

2

3 FwqpS ]A
]Fq

1
]A
]FpD1D̄2~Fq1Fp!

]A
]wqp

G ,
~11!

whereA is the variational free energy functional@17#. This
form of the kinetic equations has a transparent meaning.
deed, the kinetics could be understood as a motion repres
ing the flow of the whole statistical ensemble in the pha
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FIG. 1. The phase diagram of the model
terms of the second virial coefficient,ū2 ~in units
kBTL3!, and the dispersion of disorder,D ~in
unitskBTL3!. Solid lines represent first-order-like
transitions, dashed lines represent continuo
transitions, and dotted lines represent ‘‘spinoda
curves. The roman numerals correspond con
quently to Flory coil, liquidlike globule, ran-
dom coil, ‘‘glassy’’ phase, and folded globule
Continuous transition curves are determined
the points of the fastest change of respective
der parameters~Rg

2 for the collapse transition and
Rg
2Rg

2(c) for the glass transition!. Here and below
N530, andū3510 ~in units kBTL6!.
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space of the averaged dynamic variables. The motion is g
erned by the gradients and is directed towards the global
energy minimum.

The variational free energyA5E2TS contains the ‘‘en-
tropic’’ part

S5kB
3

2 (
q

logFq2kB
3D̄22

4 (
qp

wqp
2

FqFp
1O~D̄4!, ~12!

and the mean energyE5^H&,

E
N

5
3k

2
D011û2(

k

1

Dk
3/21û3(

k1k2

1

Y0~k1 ,k2!
3/2

2
3

2
1̂(

k

Fk

Dk
5/21û2

15

8 (
k

Pk,k

Dk
7/2

1û3
15

8 (
k1k2

Y2~k1 ,k2!

Y0~k1 ,k2!
7/22û3

3

2 (
k1k2

Y3~k1 ,k2!

Y0~k1 ,k2!
5/2,

~13!

whereûL[(2p)23(L21)/2ūL andD̂[(2p)23/2D. Note, how-
ever, that from the point of view of the Flory theory th
spring term has an entropic origin and the proper conform
tional entropy should be defined as@18#

Sc5S2
3kN

2
D01. ~14!

Here we should also introduce the monomer spatial corr
tions,

Dmm8[Dmm8, Dmm85
1
3 ^~Xm2Xm8!

2&, ~15!

and their cumulants,

Dmm8Dm9m8
~c![Dmm8Dm9m82Dmm8 Dm9m8. ~16!

One can prove that these functions depend only on the
ferences of their indices,k15m2m8 andk25m92m8,

Dmm8[Dk , Dmm8Dm9m8
~c![Pk1k2

. ~17!
v-
ee

-

a-

if-

Other definitions for Eq.~13! may be found in the Appendix
To understand the phase behavior of the system we n

to identify the important order parameters. First, the ove
size of the chain is given by the averageRg

2 of the squared
radius of gyration,

Rg
25 (

qÞ0
Fq . ~18!

Second, the glassy behavior is reflected in the cumulan
the squared radii of gyration@14#

Rg
2Rg

2~c!5D̄22Y2, Y5 (
qÞ0

wqq . ~19!

And third, the phase-separation order parameter is

C5
1

6N2 (
mm8

~Lm1Lm822l0!Dmm85 (
qÞp, q,pÞ0

wqp .

~20!

Note that for just two types of monomers ‘‘A’’ and ‘‘ B’’
with equal concentrationsnA5nB5 1

2 the latter reduces sim
ply to

C5@Rg
2~B!2Rg

2~A!#/2. ~21!

III. PHASE DIAGRAM OF THE MODEL

Here we present results of the numerical analysis of
equilibrium limit of Eqs.~10! and ~11! obtained by setting
the time derivatives to zero. Moreover, we require the
pressions~12! and ~13! for the free energy itself.

Traditionally @19–21# we work with the following com-
binationsL5(kBT/k)

1/2 and T5zb /k as the units of size
and time in the system. In the following, we have used
following particular choice of parameters:kBT51, k51,
andzb51, which fixL andT to be equal to unity.

The phase diagram is presented in Fig. 1. Phase~I! corre-
sponds to the extended Flory coil. This normal homopo
merlike coil with increasing dispersion of disorder becom
what we call a random coil~III ! after a rather soft continuou
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FIG. 2. Plots of observables vs the dispersi
of disorderD ~in units kBTL3! for different val-
ues of ū2 ~in units kBTL3!: ~a! ū250; ~b! ū2
5216; and~c! ū25235. In ~a! we present the
conformational entropy changeDS[Sc(D)
2Sc(0) ~in units kBT!; in ~b!, the mean-squared
radius of gyrationRg

2 ~in unitsL2!; and in~c!, the
glass order parameterRg

2Rg
2(c) ~in unitsL4!.
’’
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transition. On passing this transition the squared radius
gyration Rg

2 decreases somewhat while the ‘‘glassy
order parameterRg

2Rg
2(c) increases significantly. We believ

that phase~III ! is composed of relatively open coils wit
numerous loops. Indeed, in this region of the phase diag
of

m

the average two-body interaction is repulsive, but there
some strongly attractive units in the chain that can bind

gether forming loops. It is quite possible that this only lea
to a renormalization of the Kuhn length and does not aff
the fractal dimension of the coil. However, at present o
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TABLE I. Values of the dispersion of disorder at the spinodalDsp, and the critical curvesD tr , respec-
tively, for the folding transition.

N 20 30 40 50 60

Dsp, ū250 28.9 34.2 45.8 .400 .600
D tr , ū250 28.9 31.9 34.5 36.8 39.1
Dsp, ū25225 17.82 25.96 35.44 77.43 .600
D tr , ū25225 15.7 17.0 18.3 19.5 20.6
Dsp, ū25250 41.5 59.2 79.1 196 .600
D tr , ū25250 26.4 27.4 28.5 29.4 30.4
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current numerical procedure was limited to relatively sh
polymers and did not allow us to resolve this question. T
is a very interesting problem and we hope to return to
study at a later stage.

The collapse transition~the curve separating I and II
from all other phases! is second order in the whole range
D. Beginning from the homopolymerlike coil~I! for small
dispersions of disorder it leads to a homopolymerlike glob
~II !. That phase is often referred to as a liquidlike globule
the literature because the connectivity constraints there
manifested only at short distances along the chain.

In the next series of figures we draw the behavior of
conformational entropy@Fig. 2~a!#, the squared radius of gy
ration@Fig. 2~b!#, and the glass order parameter@Fig. 2~c!# vs
the dispersion of disorderD for three different values of the
second virial coefficient.

With increasingD the globule~II ! undergoes a freezing
transition. As evident from Fig. 2 the frozen globule~IV ! has
a smaller entropy, a larger size, and a pronounced glass o
parameter. The freezing transition is continuous above
tricritical point and becomes first-order-like below it. In Fi
1 we show the spinodal curve beyond which the homopo
merlike globule solution ceases to exist. Note that phase~IV !
continues to exist to the left of that curve. To find the free
ing transition curve we have to compare values of the f
energy of the two solutions. It turns out that these valu
differ very slightly by a contribution proportional toD4. As
we have discussed in the Introduction we may not fully r
on the predictions of the method in such a case. Indeed
free energy of the frozen globule solution remains somew
lower than that of the normal globule for any smallD—a
conclusion that cannot be considered as physically rea
able. Thus although we may rely on the result for the sp
odal curve, we are unable to reliably determine the freez
transition curve at the current order of the weak disor
expansion@10#. The resolution of this deficiency of the cu
rent version of the method lies in the inclusion of highe
order corrections. To do so is in principle a substantial te
nical task. Nevertheless, in Sec. IV we show that there is
unambiguous way to resolve the problem, albeit phenome
logically, within a simplified treatment discussed below.

We have no such difficulty for the first-order-like foldin
transition. Here the free energies on the two branches d
significantly ~in D2 order! and hence the folding transitio
curve is depicted along with the spinodal in Fig. 1. Acco
ing to Fig. 2 the folded state~V! is characterized by very low
entropy, compact size, smaller glass order parameter,
optimal phase separation of hydrophobic and hydroph
units ~see Figs. 2 and 7 in Ref.@10#!. We believe that the
t
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frozen globule is akin to themoltenglobule and the folded
globule to thenativestate in proteins, respectively. This co
jecture is somewhat justified also by the kinetics of the fo
ing process discussed in Ref.@10#.

An interesting observation here is that there is a p
nounced region of the metastable frozen globule. The kin
evolution after a rapid quench to the region bounded by
transition and spinodal curves will remain trapped in a froz
misfolded state for a long time related to the barrier heig
This is in agreement with observation in numerous Mo
Carlo simulations@22–26# that there is poor kinetic access
bility of the folded conformation for a generic class of s
quences.

The situation deteriorates dramatically with increasing
gree of polymerization according to Table I. Thus for suf
ciently long chains the spinodal curve cannot be reached
til the dispersion of disorder valueDsp , which tends to
infinity exponentially quickly. This means that in our mode
having all possible sequences of monomers characterize
a Gaussian distribution, the kinetic accessibility is very po
indeed. This is by no means surprising—the Gaussian di
bution is too wide—as has been pointed out by us@10# and,
earlier, by many others@27–29#. The way to make folding
more efficient is to optimize the distribution by restrictin
acceptable sequences to a narrow subclass of sequence
sessing good folding properties.

An intriguing point however is that, although the kinet
accessibility is impeded for long polymers, the folded st
still remains the main free energy minimum for systems w
quite small dispersions of disorder~see Table I!. The more
nontrivial issue of whether this remains true in the therm
dynamic limit (N→`) is answered in the affirmative in Sec
IV.

IV. LIMIT OF THE DENSE GLOBULE

In this section we analyze the limit of the high-dens
globule ~i.e., our further considerations are valid only in th
region û2,0!, so thatr2/3;(uû2u/û3)2/3@k, and hence one
may neglect the spring term. We start by noting that fo
homopolymer in this limit the equations possess only a c
stant solution Fq[F5const, and Dm[D52NF
5( 43)(2û3N/uû2u)2/3 for the conformational modesq, m
Þ0. This is pretty much true for a normal liquidlike globul
since for sufficiently largem the functionDm quickly satu-
rates to a constant. The latter behavior is simply the ma
ematical expression of the physical observation that the c
nectivity contributions of polymer chains are screened in
dense limit.
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For a random copolymer we shall seek an analogous c
stant solution by requiring, in addition, that

wqÞp[w5const, wqq[w̃5const. ~22!

It is now natural to introduce the rescaled variables,

r 25
D
N2/3, x5

N2w

DD , w5
2N3/2w̃

DD . ~23!

The first definition obviously reflects the scaling of the co
pact globule size on the polymer lengthN. The second vari-
able could be also understood as a dimensionless degre
the phase separation. Indeed, from the definitionC5N2w,
for the case of the binary distribution and equal concen
tion, by using Eq.~21!, we obtain

x5
1

2

Rg
2~B!2Rg

2~A!

Rg
2~B!1Rg

2~A!
<
1

2
. ~24!

As for the third variable, in that case one can show simila
that,

w25
Rg
2Rg

2~c!

~Rg
2!2

<1. ~25!

We believe that Eq.~23! may represent an important gene
alization of scaling variables to the realm of random copo
mers. Let us write out the specific energye, entropys, and
free energya,

e5
E
N
, s5

S
N
, a5

A
N
, ~26!

as well as the mobility per monomerzb , and the character
istic time scale,t,

zb5
z

N
, t5

t

N2/3. ~27!

Then, the specific energy~13! and entropy~12! reduce to the
expressions,

e5r23FU2@x,w#2
3

2
D̂S x1

w

AND G1r26S 43D
3/2

U3@x,w#,

~28!

s5 3
4kB@4 log r1 log~124x22w2!#. ~29!

U2@x,w#5û2@11 15
8 ~x21w2!1•••#, ~30!

U3@x,w#5û3@11 9
2 ~x21w2!1•••#. ~31!

The kinetic equations following from Eqs.~10! and ~11!
take form,

zb
2

dr

dt
5
kBT

r
2
1

3

]e

]r
52

1

3

]a

]r
, ~32!
n-

-

of

-

y

-

zb
2

dx

dt
52

x

r 2 S 2kBT1
124x2

3x

]e

]x
2
4w

3

]e

]wD
52

124x2

3r 2
]a

]x
1
4xw

3r 2
]a

]w
, ~33!

zb
2

dw

dt
52

w

r 2 S 2kBT1
4~12w2!

3w

]e

]w
2
4x

3

]e

]x D
52

4~12w2!

3r 2
]a

]w
1
4xw

3r 2
]a

]x
, ~34!

Let us emphasize that the entropy in the ansatz~29!, al-
though it coincides with the approximate expression~12! re-
stricted to constant variables in lower orders of expansion
in fact exact within the limits of the Gaussian method. Th
kinetic equations~32! and ~33! can be exactly obtained b
differentiation of the free energy, Eqs.~29! and ~28!.

It is encouraging that the time derivative of the free e
ergy is nonpositive due to the bounds~24! and ~25! and the
relation,

zb
da

dt
52

2

3

]a

]X
•M•

]a

]X
, ~35!

where we have used the vector notationsX5(r ,x,w) and
M is a matrix with a positive definite determinant

detM5
4

r 4
~124x22w2!.0. ~36!

The validity of similar approximate treatments was d
cussed by us in Ref.@30#. Direct comparison with the exac
results here confirms that the approximation is fairly go
for sufficiently dense globule and largeN. In Figs. 3 and 4
we support this assertion by presenting a part of the ph
diagram and dependences of the variablesr , w, andx vsD.
We observe here the same qualitative behavior as in the c
plete scheme of Sec. III. Really, for phase~IV ! the glass
parameterw is very large and the sizer is larger there than
for phase~II !. For phase~V! the phase separationx is larger,
while r andw are smaller than for~IV !. In this simplified
treatment it is trivial to take the thermodynamic lim
N→`. Simple numerical analysis of Eqs.~32!–~34!, ~29!
and~28! shows that the phase boundary of the folded stat
weakly dependent onN and that this state remains the ma
free energy minimum for phase~V! even in the thermody-
namic limit.

As a criticism of the approximation for finite values o
N andk we note that the constant ansatz underestimates
conformational entropy of the frozen globule~IV !. In Ref.
@10# we alluded to an observation that such a globule c
sists of locally frozen clusters along the chain, and theref
is sensitive to the spring term. As a result the frozen ph
~IV ! is somewhat narrower in the approximate scheme co
pared to that of Fig. 1. For similar reasons we cannot re
trust theN dependence of the folding spinodal line here a
should use, instead, data from Table I. In other respects
current approximate scheme presents an attractive and e
tractable set of only three equations for large-scale order
rameters that still correctly describe the essential confor
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FIG. 3. Part of the phase diagram for th
dense globule in terms of the second virial coe
ficient ū2 ~in unitskBTL3!, and the dispersion of
disorderD ~in units kBTL3!, obtained from the
reduced self-consistent equations~32!–~34!.
Solid lines represent first-order-like transition
dashed lines represent continuous transitions,
dotted lines represent ‘‘spinodal’’ curves. Her
all parameters have the same values as in Fig
but k50.
e
t
ri
.

ng
s
d
s i

,

le

ve

to

ran-

but
ng

-
the

ef.
the
ere
tional transitions of the dense globule. It appears to b
reasonable generalization of simple Flory-type theories
random copolymers, and has the additional merit of desc
ing the kinetics of conformational changes of the globule

Despite certain improvements of the entropy~29! there
still remains the problem with determination of the freezi
transition curve. However, now we may attempt to addres
phenomenologically along similar lines of thinking. Indee
let us improve the theory by adding the higher-order term
Eq. ~30!,

U25û2~11a2y1a4y
21••• !, ~37!

wherey[x21w2 and a25
15
8 . We must, strictly speaking

evaluate the higher-order terms renormalizingD andu3 and
so on, but let us assume for the moment that they are
significant for the problem at hand. The coefficienta4 can be
found by the requirement that the folding transition cur
behaves asD→0 for û2→2`. This is equivalent to requir-
ing that for sufficiently largeuû2u we have
a
o
b-

it
,
n

ss

~e lg2egl!~D50!;2
uû2u
û3

S 12
@11~ 15

8 !y1a4y
2#2

11~ 9
2 !y

D <0.

~38!

By setting the discriminant of the resulting cubic equation
zero we obtaina452 9

16. For this choice ofa4 it is possible,
therefore, to cure the theory and determine the freezing t
sition law and we findD freez;uû2u2a, where a50.96
60.04. We have derived this result phenomenologically,
it is consistent with what one would expect for the freezi
transitionD freez;r21;uû2u21 obtained from the replica for-
malism in Refs.@31# and @15#. Somewhat different expres
sions have been derived for the freezing transition in
symmetric random ‘‘charge’’@16# model @32,33#.

V. CONCLUSION

We regard this work as the conclusion to our paper, R
@10#, in which we proposed a self-consistent method for
model of a Gaussian random amphiphilic copolymer. Th
s

nd
i-
nd
d
us
FIG. 4. Plots of the dimensionless quantitie
r , w, andx vs the dispersion of disorderD ~in
units kBTL3! for ū25250 ~in units kBTL3! and
other parameters as in Fig. 3. Points correspo
to the values of observables in the global min
mum of the free energy, dashed lines correspo
to values in metastable minima; vertical dotte
lines correspond to the points of discontinuo
transitions.
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we discussed the kinetics of the folding process and here
investigated the equilibrium diagram of states of the mod

In many respects we found the method satisfactory in
tacking such a hard problem. Unfortunately, it has a d
ciency in describing the freezing transition curve. Howev
it can be fixed by phenomenologically improving the expr
sion for the internal energy and self-consistently determin
the coefficient of the higher-order correction. We believe t
a similar coarse-grained statistical description provides
fundamental methodology that in future will permit furth
progress in building more detailed models of proteins.

One of the principal conclusions of our consideration
that the Gaussian distribution of sequences is too wide
possess any good folding properties in the average. Des
the thermodynamic stability of the folded state for lo
chains, its kinetic accessibility is very impeded. Thus
achieve the folded conformation a polymer should gener
overcome a potential barrier whose height grows with
chain length. Selection and design of good folding
quences, therefore, remains the main issue in the fundam
tal problem of protein folding. While we presently stud
rather simple models of random copolymers, we believe
the direction we have laid out will have increasing relevan
for biological problems.
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APPENDIX: SOME DEFINITIONS

For a ring polymer of lengthN the Fourier transformation
is defined as

Xm5 (
q50

N21

f m
~2q!xq , xq5

1

N (
m50

N21

f m
~q!Xm , ~A1!

f m
~q![expS 2p iqm

N D . ~A2!
l-

s
n

in
e
l.
t-
-
,
-
g
t
e

to
ite

ly
e
-
n-

at
e

h
-
i-

The two-point equal-time correlation functions~15! may be
written in terms of the Fourier modes as

Dmm85(
q

dmm8
~q! Fq , ~A3!

dmm8
~q!

52S 12cos
2pq~m2m8!

N D . ~A4!

Analogously we deduce the three-point functions

Dmm8m9[
1
3 ^~Xm2Xm8!~Xm92Xm8!&5(

q
dmm8m9

~q! Fq ,

~A5!

dmm8m9
~q!

5 1
2 ~dmm8

~q!
1dm9m8

~q!
2dmm9

~q!
!. ~A6!

In Eq. ~13! we have used the following set of definitions:

Y0~k1 ,k2!5Dk1
Dk2

2Dk1k2
2 , ~A7!

Y2~k1 ,k2!5Dk1
2 Pk2 ,k2

1Dk2
2 Pk1 ,k1

14Dk1k2
2 Pk1k2 ,k1k2

12Dk1
Dk2

Pk1 ,k2
24Dk1k2

~Dk2
Pk1 ,k1k2

1Dk1
Pk2 ,k1k2

!, ~A8!

Y3~k1 ,k2!5Pk1 ,k2
2Pk1k2 ,k1k2

, ~A9!

Fk5(
qp

dk
~q,p!wgp . ~A10!

We have also denoted

Pk
~s!5(

p
dk

~p,p1s!wp,p1s , ~A11!

Pk1 ,k2
5D̄22(

s
Pk1

~s!Pk2
~s!5Dk1

Dk2
~c! ~A12!

with the coefficients

dk
~q,p!5 1

2 ~dk
~q!1dk

~p!2dk
~q2p!!. ~A13!
n,
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